± 0.6 (4) e \AA^{-3} in the remaining parts of the cell; no extinction correction; atomic scattering factors for neutral atoms and real and imaginary dispersion terms from International Tables for X-ray Crystallography (1974); programs: Enraf-Nonius Structure Determination Package (Frenz, 1985), PARST (Nardelli, 1983), SHELXTL-PLUS (Sheldrick, 1987), SCHAKAL (Keller, 1986), PCK83 (Williams, 1984), PLATON (Spek, 1982), MISSYM (Le Page, 1987). The molecules and the numbering scheme are shown in Fig. 1 and a stereoscopic view of the unit cell in Fig. 2. Positional parameters and the equivalent values of the displacement parameters are given in Table 1.* Bond lengths and angles, torsion angles and short intermolecular distances are given in Table 2.

* Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52581 (13 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Related literature. Naumann \& Herberg (1982).

References

Frenz, B. A. (1985). Enraf-Nonius Stucture Determination Package; SDP-Plus, version 3.0. Enraf-Nonius, Delft, The Netherlands.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham; Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Keller, E. (1986). SCHAKAL. A Fortran Program for the Graphical Representation of Molecular and Crystallographic Models. Univ. of Freiburg, Federal Republic of Germany.
Le Page, Y. (1987). J. Appl. Cryst. 20, 264-269.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Naumann, D. \& Herberg, S. (1982). J. Fluorine Chem. 19, 205-212.
Sheldrick, G. M. (1987). SHELXTL-PLUS (Release 3.4). An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. For Nicolet $R 3 m / V$. Univ. of Göttingen, Federal Republic of Germany.
Spek, A. L. (1982). The EUCLID Package. In Computational Crystallography, edited by D. Sayre, p.528. Oxford: Claredon Press.
Williams, D. E. (1984). PCK83. Quantum Chem. Program Exchange Program No. 481.

Acta Cryst. (1990). C46, 1115-1117

9-Ethylguaninium Tetrachloroaurate(III) Hydrate

By H. Preut, B. Fischer and B. Lippert
Fachbereich Chemie, Universität Dortmund, Postfach 500500, D-4600 Dortmund 50, Federal Republic of Germany

(Received 8 December 1989; accepted 19 January 1990)

Abstract

Amino-9-ethyl-6-oxo-1,6-dihydro$7 \mathrm{H}^{+}, 9 \mathrm{H}$-purinium tetrachloroaurate(III) hydrate, $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}_{5} \mathrm{O}^{+} . \mathrm{AuCl}_{4}^{-} \cdot \mathrm{H}_{2} \mathrm{O}, M_{r}=536 \cdot 98$, monoclinic, $P 2_{1} / n, a=7.345$ (2), $b=14.976$ (4), $c=13.366$ (5) \AA, $\beta=93.35(3)^{\circ}, \quad V=1467 \cdot 7(8) \AA^{3}, \quad Z=4, \quad D_{x}=$ $2.430 \mathrm{Mg} \mathrm{m}^{-3}, \quad F(000)=1008, \quad \lambda($ Mo K $\alpha)=$ $0.71073 \AA, \mu=10.74 \mathrm{~mm}^{-1}, T=291$ (1) K, final R $=0.039$ for 2378 unique observed $[F \geq 3.0 \sigma(F)]$ diffractometer data. The title compound consists of discrete 9 -ethylguaninium cations, tetrachloroaurate(III) anions and water molecules. The $\left[\mathrm{AuCl}_{4}\right]^{-}$ anion is planar with $\mathrm{Au}-\mathrm{Cl}$ distances in the range $2 \cdot 277$ (2)-2-283 (2) \AA.

Experimental. Orange-yellow needles of the title compound were obtained in 81% yield by cocrystallization of 9-ethylguanine and NaAuCl_{4} in $0 \cdot 1 \mathrm{M} \mathrm{HCl}$ and subsequent recrystallization from water at 276 K . A crystal of size $\sim 0.26 \times 0.04 \times 0.12 \mathrm{~mm}$ was used, D_{m} was not determined. Intensity data were collected with $\omega / 2 \theta$ scans, scan speed $4-15^{\circ} \mathrm{min}^{-1}$ in
θ and scan width $1 \cdot 2^{\circ}+$ dispersion. A Nicolet $R 3 \mathrm{~m} / V$ diffractometer with graphite-monochromated Mo $K \alpha$ radiation was used. The lattice parameters were determined from least-squares fit of 28 reflections with $2 \theta \leq 33.09^{\circ} ; \omega$ scans of low-order reflections along the three crystal axes showed acceptable mosaicity. Six standard reflections $(200,020,002, \overline{2} 00,0 \overline{2} 0,00 \overline{2})$ were recorded every 2.5 h , only random deviations were detected during 158 h of X-ray exposure; 10023 reflections with $3 \cdot 0$ $\leq 2 \theta \leq 50 \cdot 0^{\circ},-9 \leq h \leq 9,-18 \leq k \leq 18,-16 \leq l \leq$ 16 were measured. The data were corrected for Lorentz-polarization and absorption effects, the latter via ψ scans; the max./min. transmission factors were $1 \cdot 00 / 0 \cdot 53$. The intensities were averaged ($R_{\text {int }}=$ 0.065) to 2593 unique reflections, 2378 of which had $F \geq 3 \cdot 0 \sigma(F)$. The systematic absences $(h 0 l) h+l=2 n$ $+1,(0 k 0) k=2 n+1$ conform to space group $P 2_{1} / n$. The structure was solved from Patterson function and $\Delta \rho$ maps. It was refined (on F) using full-matrix least squares with anisotropic temperature factors for © 1990 International Union of Crystallography

Table 1. Atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{4}\right)$

Fig. 1. General view (SHELXTL-PLUS) of the ethylguaninium cation and the tetrachloroaurate(III) anion, with atomic numbering scheme.

Fig. 2. Stereoscopic view (SHELXTL-PLUS) of the unit cell.
all non- H atoms and a common isotropic temperature factor for H atoms, which were placed in geometrically calculated positions ($\mathrm{C}-\mathrm{H}, \quad \mathrm{N}-\mathrm{H}$ $0.96 \AA$). The water H atoms were not included in the refinement. 173 parameters were refined. Weights w $=1 \cdot 0 /\left[\sigma^{2}(F)+\left(0.000985 F^{2}\right)\right]$ led to a featureless analysis of variance in terms of $\sin \theta$ and F_{o}. The refinement converged to $S=0.91, R=0.039, w R=$ 0.034 , and $\Delta / \sigma \leq 0.06$ (no extinction correction). The largest peak and trough in the final $\Delta \rho$ map were

Table 2. Bond distances (\AA), bond angles $\left({ }^{\circ}\right)$, torsion angles $\left({ }^{\circ}\right)$, least-squares planes and dihedral angles $\left({ }^{\circ}\right)$

Symmetry codes: (i) $-x,-y+1,-z+2$; (ii) $+x,+y,+z+1$; (iii) $-x+1 / 2,+y+1 / 2,-z+1 / 2+1$.
$\pm 1 \cdot 1(5) \mathrm{e} \AA^{-3}$. Atomic scattering factors for neutral atoms and real and imaginary dispersion terms were taken from International Tables for X-ray Crystallography (1974). The programs used were PARST (Nardelli, 1983), SHELXTL-PLUS (Sheldrick, 1987), PLATON (Spek, 1982) and MISSYM (Le Page, 1987). The molecule and numbering scheme are shown in Fig. 1 and a stereoscopic view of the unit-cell content in Fig. 2. Positional parameters and the equivalent values of the anisotropic temperature factors for the non-H atoms are given in Table 1.* Selected bond lengths, bond angles, torsion angles, least-squares planes and dihedral angles and possible hydrogen-bond geometries are given in Table 2.

[^0]Related literature. Compared to $\mathrm{Pt}^{\mathrm{II}}$ and $\mathrm{Pd}^{\mathrm{II}}$, the coordination chemistry of the d^{8} metal ion $\mathrm{Au}^{\text {III }}$ has been studied considerably less extensively (Sadler, 1976). To date, structurally characterized examples of nucleobase complexes of $\mathrm{Au}^{\text {III }}$ are restricted to two models containing pyrimidine bases 1methylcytosine (Holowczak, Stancl \& Wong, 1985) and 1 -methyluracil (Micklitz, Mikulcik, Müller, Riede \& Lippert, 1989). No structurally characterized purine base complex of $\mathrm{Au}^{\text {III }}$ is presently available. Our attempts to prepare a 9 -ethylguanine complex of $\mathrm{Au}^{\text {III }}$ in analogy to AuCl_{3} (guanosine) (Hadjiliadis, Pneumatikakis \& Basosi, 1981) have so far been unsuccessful. The structure of the cation closely resembles that of the related tetrachloroplatinate(II) analogue (Purnell \& Hodgson, 1976). Even details such as the dihedral angle between the pyrimidine and the imidazole portions of the guaninium $\left(3.9^{\circ}\right)$ are very similar. The site of protonation is also $\mathrm{N}(7)$, as is evident from the increase of the internal ring angle at $\mathrm{N}(7)$ from 104° in neutral 9ethylguanine (Destro, Kistenmacher \& Marsh, 1974; Taylor \& Kennard, 1982) to $108.2(6)^{\circ}$ in the title compound and the rather short [$2 \cdot 736$ (7) \AA] hydrogen bond of $\mathrm{N}(7) \mathrm{H}$ to the water molecule. While the platinate salt displays this feature as well $\left[\mathrm{N}(7) \mathrm{H} \cdots \mathrm{OH}_{2} 2 \cdot 650 \AA\right]$, the other hydrogen bonds differ in both structures. Instead of $\mathrm{N}(3) \cdots \mathrm{H}_{2} \mathrm{~N}(2)$ hydrogen bonding in the platinate salt, the aurate
compound has pairs of intermolecular $\mathrm{N}(1) \mathrm{H} \cdots \mathrm{O}(6)$ hydrogen bonds of 2.837 (8) \AA, for example.

This work has been supported by the Fonds der Chemischen Industrie.

References

Destro, R., Kistenmacher, T. J. \& Marsh, R. E. (1974). Acta Cryst. B30, 79-85.
Hadjiliadis, N., Pneumatikakis, G. \& Basosi, R. (1981). Inorg. Biochem. 14, 115-126.
Holowczak, M. S., Stancl, M. D. \& Wong, G. W. (1985). J. Am. Chem. Soc. 107, 5789-5790.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributer Kluwer Academic Publishers, Dordrecht.)
Le Page, Y. (1987). J. Appl. Cryst. 20, 264-269.
Micklitz, W., Mikulcik, P., Müller, G., Riede, J. \& Lippert, B. (1989). Inorg. Chim. Acta, 165, 57-64.

Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Purnell, L. G. \& Hodgson, D. J. (1976). J. Am. Chem. Soc. 98, 4759-4763.
Sadler, P. J. (1976). Struct. Bonding (Berlin), 29, 171-214.
Sheldrick, G. M. (1987). SHELXTL-PLUS (Release 3.4) for Nicolet R3m/V crystallographic Systems. An Integrated System for Solving, Refining, and Displaying Crystal Structures from Diffraction Data. Univ. of Göttingen, Federal Republic of Germany.
SPEK, A. L. (1982). The EUCLID Package. In Computational Crystallography, edited by D. SAyRE, p. 528. Oxford: Claredon Press.
Taylor, R. \& Kennard, O. (1982). J. Mol. Struct. 78, 1-28.

Acta Cryst. (1990). C46, 1117-1119

trans-Bis(glycine- N)bis(methylamine)platinum(II) Dinitrate Dihydrate, trans- $\left[\left(\mathrm{NH}_{2} \mathrm{CH}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NO}_{2}\right)_{2} \mathrm{Pt}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathbf{2 H} \mathbf{H}$

By H. Preut, F. Schwarz and B. Lippert
Fachbereich Chemie, Universität Dortmund, Postfach 500500, D-4600 Dortmund, Federal Republic of Germany

(Received 11 September 1989; accepted 20 December 1989)

Abstract

C}_{6} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{O}_{12} \mathrm{Pt}, \quad M_{r}=567 \cdot 38\), monoclinic, $P 2_{1} / c, a=9.125$ (2), $b=12 \cdot 860$ (3), $c=7.752$ (2) \AA, $\beta=104 \cdot 72(2)^{\circ}, \quad V=879 \cdot 8(4) \AA^{3}, \quad Z=2, \quad D_{x}=$ $2.142 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{Mo} \mathrm{K} \mathrm{\alpha})=0.71073 \AA, \quad \mu=$ $8.12 \mathrm{~mm}^{-1}, F(000)=552, T=291$ (1) K, final $R=$ 0.026 for 1341 unique observed $[F \geq 3.0 \sigma(F)$] diffractometer data. The centrosymmetric cation contains two methylamine and two neutral glycine ligands, each coordinated to Pt through the NH_{2} group. The Pt has a square-planar coordination geometry without any unusual features. The geometry of the methylamine ligand is very similar to that found in

trans- $\left(\mathrm{NH}_{2} \mathrm{CH}_{3}\right)_{2} \mathrm{PtCl}_{2}$ [Arpalahti, Lippert, Schöllhorn \& Thewalt (1988). Inorg. Chim. Acta, 153, 45-49] and two derivatives containing the model nucleobase 1-methylcytosine [Pesch, Preut \& Lippert (1990). Inorg. Chim. Acta, 169, 195-200]. The glycine ligands likewise have a geometry that is close to that observed in a related complex containing the anionic glycinato ligand, except for the carboxylato groups. Protonation of $\mathrm{O}(2)$ in the title compound expectedly causes significant differences in bond lengths between protonated $[1.320(7) \AA]$ and non-protonated CO groups $[1-207$ (6) \AA]. The acidic proton at $\mathrm{O}(2)$ forms © 1990 International Union of Crystallography

[^0]: * Lists of structure factors, anisotropic thermal parameters and H-atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52621 (13 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

